Drift velocity of rotating spiral waves in the weak deformation approximation

نویسندگان

  • Hong Zhang
  • Bambi Hu
  • Gang Hu
  • Jinghua Xiao
چکیده

The drift velocities of spiral waves driven by a periodic mechanic deformation or a constant or periodic electric field are obtained under the weak deformation approximation around the spiral wave tip. An approximate formula is derived for these drift velocities and some significant results, such as the drift of spiral waves induced by a mechanical deformation with v53v0 , are predicted. Numerical simulations are performed demonstrating qualitative agreement with the analytical results. © 2003 American Institute of Physics. @DOI: 10.1063/1.1592791#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of mechanical deformation on spiral turbulence

– The behavior of spiral turbulence in mechanically deformed excitable media is investigated. Numerical simulations show that when the forcing frequency is chosen around the characteristic frequency of the system, complicated spiral turbulence may be quenched within a shorter evolution time, compared to the case free of mechanical deformation. It is shown that the observed phenomenon occurs due...

متن کامل

Drift of rigidly rotating spirals under periodic and noisy illuminations.

Under the weak deformation approximation, the motion of rigidly rotating spirals induced by periodic and noisy illuminations are investigated analytically. We derive an approximate but explicit formula of the spiral drift velocity directly from the original reaction-diffusion equation. With this formula we are able to explain the main features in the periodic and noisy illuminations induced spi...

متن کامل

Drift of spiral waves controlled by a polarized electric field.

The drift behavior of spiral waves under the influence of a polarized electric field is investigated in the light that both the polarized electric field and the spiral waves possess rotation symmetry. Numerical simulations of a reaction-diffusion model show that the drift velocity of the spiral tip can be controlled by changing the polarization mode of the polarized electric field and some inte...

متن کامل

Computation of the drift velocity of spiral waves using response functions.

Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical, chemical, and biological nature. In the presence of a small perturbation, the spiral wave's center of rotation and fiducial phase may change over time, i.e., the spiral wave drifts. In linear approximation, the velocity of the drift is proportional to the convolution of the perturbation wit...

متن کامل

Drift laws for spiral waves on curved anisotropic surfaces.

Rotating spiral waves organize spatial patterns in chemical, physical, and biological excitable systems. Factors affecting their dynamics, such as spatiotemporal drift, are of great interest for particular applications. Here, we propose a quantitative description for spiral wave dynamics on curved surfaces which shows that for a wide class of systems, including the Belousov-Zhabotinsky reaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003